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Information theory
A mathematical theory that 
deals with measures of 
information and their 
application to the study of 
communication systems. In 
neuroscience it is used to 
establish the amount of 
information about a stimulus or 
behaviour that is contained in 
the neural responses.

Local field potential
(LFP). A neurophysiological 
signal that is obtained by 
low-pass filtering extracellular 
recordings. It represents the 
mean field potential generated 
by the slow components of 
synaptic and neural events in 
the vicinity of the recording 
electrode.

clearly indicate whether an apple or an orange is being 
seen, but this uncertainty might be resolved when the 
activity of other neurons is considered. In fact, the popu-
lation analysis based on decoding or information theory 
can reveal how the other neurons resolve this ambigu-
ity — for example, by coordinating their firing to tag 
particularly salient events22,23 or by having each neuron 
represent a particular stimulus feature24–26. Second, 
postsynaptic neuronal systems must usually interpret 
neuronal responses obtained in only one trial. Both the 
information-theoretic and the decoding approaches 
quantify stimulus knowledge obtained with the observa-
tion of single-trial population responses, thus providing 
a framework that is compatible with the strict timescales 

of online brain processing. Third, the stimulus features 
encoded by the spike trains can be discovered by assess-
ing whether the population response can discriminate 
different stimuli containing a particular feature. Fourth, 
it is possible to systematically evaluate how different 
features of the spike trains affect the performance of a 
decoding algorithm or the amount of extracted infor-
mation. Fifth, the information given by different meas-
ures of neuronal activity, such as spike trains and local 
field potentials (LFPs), can be analysed and combined. 
Although these two signals have very different charac-
teristics and signal-to-noise ratios, information theory 
and decoding algorithms allow a direct comparison 
between LFPs and spikes because they project the two 

Box 1 | Extracellular recordings

Extracellular recordings are usually performed by inserting microwires into the brain1. After amplification, the signal is 
low-pass filtered to obtain the local field potential — the mean field potential generated by neurons in the vicinity of the 
electrode — and high-pass filtered to identify the activity of single neurons using spike detection and sorting algorithms. 
The example shown in the figure corresponds to a recording of approximately half an hour in the left hippocampus of an 
epileptic patient24,44, of which 5 s of continuous data are shown. After high-pass filtering, the firing of nearby neurons 
appears as spikes on top of background activity. Spikes are detected using an amplitude threshold (represented by the red 
horizontal line). Features of the spike shapes are extracted and the spikes are sorted accordingly. For neurons located 
approximately 50–100 μm from the electrode tip4,122, the signal-to-noise ratio is good enough to distinguish the activity of 
each single unit (inner circle; spikes in red, green and cyan). For more distant neurons, up to approximately 150 μm from the 
tip (outer circle), spikes can be detected but the difference in their shapes is masked by the noise and they are grouped 
together in a ‘multi-unit’ cluster (spikes in blue). Spikes from neurons further away from the tip (shown in light grey in the 
schematic) cannot be detected and contribute to the background noise.

There are several issues that make spike sorting challenging18. In particular, some neurons fire very sparsely — for 
example, the neuron shown in cyan in the figure fired only 42 spikes in approximately half an hour, a mean firing rate of less 
than 0.05 Hz. These neurons are usually hard to detect. Interestingly, such sparsely firing neurons showed the most 
selective and interesting responses in human recordings24.
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Posterior probability
The posterior probability of a 
random variable is the 
conditional probability 
assigned to the variable given 
some event. For example, the 
posterior probability P(s|r) is 
the conditional probability that 
stimulus s was presented, given 
that a response r was 
observed.

Shannon entropy
A measure of the uncertainty 
about the value that might be 
taken by a random variable.

Bit
The unit used to measure 
reduction of uncertainty. One 
bit corresponds to a reduction 
of uncertainty by a factor of 
two (for example, a correct 
answer to a yes/no question).

signals on to a common scale. It then becomes possible 
to assess whether the LFP adds some knowledge about 
the stimulus that cannot be obtained from spikes alone 
and vice versa.

Decoding algorithms. Decoding is the prediction of 
which stimulus or behaviour elicits a particular neuro-
nal response in a single trial. An example is given by 
Bayesian decoding. Let P(s) denote the probability of 
presentation of stimulus s (belonging to a set S) and P(r|s) 
denote the conditional probability of obtaining a popula-
tion response r (out of a response set R) when stimulus s 
is presented. Using Bayes’ theorem, we obtain27:

P(s|r) = P(r|s) · P(s)
P(r)        

(1)

with 

P(r) = s P(r|s) · P(s)       (2)
Equation 1 gives the posterior probability that, given a 

response r, stimulus s was presented. Bayesian decoding  
calculates from this posterior probability distribu-
tion a single prediction of the most likely stimulus (sP)
(REFS 13,28–30) — for example, by taking: sP = arg maxs 
(P(s|r)).

Besides the Bayesian approach, there are several 
other methods to decode the stimulus in a given trial. 
A thorough discussion of these decoding algorithms 
has been provided elsewhere10,11,13,14,31, and a short 
description of the most common methods is given in 
BOX 2. The implementation of decoding algorithms is  
illustrated in FIG. 2.

To validate decoding results, some trials can be used 
to optimize the decoder (the training set) and the rest to  
test its performance, a procedure called cross-validation32.  
It is important that trials belonging to the training set are 
not used to evaluate the decoding performance because 

this may lead to artificially high values owing to overfit-
ting33. Furthermore, both the training and the testing 
sets should be large enough to avoid underestimating the 
decoding performance owing to poor optimization of 
the decoder in the first case and low statistics for testing 
in the latter. A common procedure is the ‘leave-one-out’ 
validation, in which each trial is predicted based on the 
distribution of all the other trials. This has the advan-
tage that both optimization and testing are based on the  
largest possible number of trials33.

Decoding results are usually presented in the form 
of ‘confusion matrices’ (FIG. 2c). The values on a given 
row i and column j of a confusion matrix represent the 
(normalized) number of times that a presentation of 
stimulus i is predicted by the decoder to be stimulus j. 
If the decoding is perfect, the confusion matrix should 
have entries equal to one along the diagonal and zero 
everywhere else. For equiprobable stimuli, performance 
at chance levels should be reflected by a matrix in which 
each entry has equal probability 1/K (with K being the 
number of stimuli).

Shannon information theory. Another powerful way to 
study the activity of neuronal populations is to calculate 
the information about a given stimulus or behaviour 
contained in the neuronal responses using the formal-
ism of Shannon information theory. As before, suppose 
that a stimulus s belonging to a set S is presented with a 
probability P(s). The Shannon entropy H(S) of the distri-
bution of probabilities P(s) for each stimulus is defined 
as15,16,27,34:

H(S) = –  P(s)log2P(s)
s        

(3)

This quantifies the uncertainty about which stimulus 
is presented or, conversely, the average amount of infor-
mation gained with each stimulus presentation. Entropy 
is measured in bits if the logarithm is taken with base 2 

Figure 1 | Three main steps for the population analysis of neural recordings. The common steps for analysing how a 
population of neurons encodes information about visual inputs are shown. First, recordings are taken at different sites 
with implanted electrodes. Second, the simulated activity of single neurons is extracted from the continuous data using 
spike-sorting algorithms. Third, information is inferred from the multiple spike trains with decoding algorithms (which can 
predict that the stimulus was an apple), or information theory (which quantifies the knowledge about the stimulus gained 
by observing the population response). The population analysis allows the study of the information carried by the different 
features of the multiple spike trains. For example, it can be established whether the information of the apple is given by an 
increase in firing (neuron in red), by a particular temporal firing pattern (neuron in green) or by the simultaneous firing of a 
subset of neurons (neurons in blue and grey). The vertical dotted line marks stimulus onset.
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We then investigated what fraction of spon-
taneous action potentials were related to the
patterns of population activity and to the func-
tional architecture (19). We computed the his-
togram of correlation coefficients, showing the
number of frames occurring for any given value
of correlation coefficient, over an entire imaging
session (Fig. 3A). The symmetric shape of the
histogram, centered on 0, indicates that the state
of the network has no bias toward the PCS of

any given neuron. We also calculated the anal-
ogous histogram only for the times at which the
monitored single neuron fired an action poten-
tial (Fig. 3B). We refer to this histogram as the
activity histogram. In contrast to the first sym-
metric histogram shown in Fig. 3A, the activity
histogram exhibits a significant bias toward pos-
itive correlation values. This implies that a ma-
jority of the spontaneous action potentials occur
when the population activity is positively corre-

lated with the neuron’s functional architecture.
In order to obtain the probability that a neuron
will fire an action potential at any given value of
the correlation coefficient, we divided the bot-
tom histogram by the top one (Bayes rule),
which resulted in a steadily increasing function
past a certain threshold. To obtain the predicted
instantaneous firing rate of a neuron, we further
divided this probability by the duration of the
time frame (Fig. 3C). At low values of correla-
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Fig. 1. (A) The experimental setup for real-time optical imaging (6–8).
(B) (Upper row) Movie frames depicting the development in time of
a single condition orientation map in response to a presentation of
vertical gratings. Frames are 9.6 ms apart. Only the changes in light
intensity are shown here. Light patches show maximum activation
and correspond to vertical orientation domains; the darker patches
are also activated (subthreshold activation) although to a smaller
extent. They correspond to the horizontal orientation columns as
shown in the lower row. Clipping range: !F/F " 4 # 10$4 where F is
the fluorescence intensity. (Lower row) Same as in upper row for the
differential orientation map. !F/F " 7 # 10$4. (C) The neuron’s PCS
for the evoked session shown in (B). !F/F " 4 # 10$4. (D) The single
condition orientation map, as shown in (B). !F/F " 4 # 10$4.

Fig. 2. Relation between the action potentials of
a single neuron and the population state of the
network. (A) Black trace: stimulus time course.
Red trace: correlation coefficient of the instan-
taneous snapshot of population activity with the
PCS pattern. Green trace: observed spike train of
evoked activity with the optimal orientation for
that neuron. Blue trace: reconstructed spike train
(16). The similarity between the reconstructed
and observed spike trains is evident. Also, strong
upswings in the values of correlation coefficients
are evident each time the neuron emits bursts of
action potentials. Every strong burst is followed
by a marked downswing in the values of the
correlation coefficients. (B) The same as (A), but
for a spontaneous activity recording session
from the same neuron (eyes closed). (C) The
neuron’s PCS, calculated during evoked activity
and used to obtain both (A) and (B). (D) The
cortical state corresponding to spontaneous ac-
tion potentials. The two patterns are nearly
identical (correlation coefficient 0.81). (E and F)
Another example of the similarity between the
neuron’s PCS (E) and the cortical state corre-
sponding to spontaneous activity (F) from a
different cat obtained with the high-resolution
imaging system (correlation coefficient 0.74). Clipping range: !F/F " 1 # 10$4.
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“Cortical states” during ongoing activity 
reproduce evoked orientation maps!

R=0.81	  
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because fluctuations around these means were aligned along
a direction similar to that of spontaneous fluctuations. This was
further supported by repeating the analyses of Figures 6E and
6F after eliminating noise correlations by shuffling, and directly
shifting the mean vectors (Figure S10).

To obtain an estimate of the strength of these constraints on
population rate vectors, we next asked what the volumes of
the spaces outlined by spontaneous events and sensory
responses were (note that as MDS does not preserve volume,
this cannot be determined from Figure 6D). Volumes were esti-
mated by calculating the square root determinant of the cell-
by-cell spike count covariance matrix (see Figure S11). Volumes
were expressed as a fraction of the volume that would be avail-
able to a population displaying the same range of firing rates, in
the absence of correlational constraints, as estimated by the
volume of the shuffled spontaneous vectors. The volume fraction
depended on the size of the population considered. Figure 7E
shows volume fractions for the set of responses to a single
sensory stimulus, the pooled responses to the 10 stimuli we pre-
sented, and the set of spontaneous events, averaged over
randomly chosen cell subsets of varying sizes, out of 55 cells
recorded in one experiment. In all cases the volume fraction
decreased monotonically with the number of cells considered,

Figure 6. Combinatorial Constraints on Population Firing
Rate Vectors
(A) Spike counts of two neurons (recorded from separate tetrodes)

during the first 100 ms of spontaneous upstates (black), responses

to a tone (green), and responses to a natural sound (magenta).

Data were jittered to show overlapping points. Note that regions

occupied by responses to the sensory stimuli differ, but are both

contained in the realm outlined by spontaneous patterns.

(B) Contour plot showing regions occupied by points from (A). The

blue outline is computed from spike counts shuffled between

upstates, indicating the region that would be occupied in the

absence of spike count correlations.

(C) Firing rate vectors of the entire population, visualized using

MDS; each dot represents the activity of 45 neurons, nonlinearly

projected into 2D space.

(D) Contour plot derived from MDS data, with responses to indi-

vidual stimuli marked separately. Sensory-evoked responses

again lie within the realm outlined by spontaneous events.

(E) Scatter plot showing the Euclidean distances from each

evoked event to its closest neighbor in the spontaneous events

(Espont), and in the shuffled spontaneous events (Eshuf). Dashed

red line shows equality.

(F and G) Histograms showing the difference between distances

to shuffled and spontaneous events (Eshuf ! Espont). Top and

bottom: data from all anesthetized and unanesthetized experi-

ments, respectively. Almost every evoked event was closer to

a true spontaneous vector than to a shuffled vector.

suggesting that each additional neuron added further
constraints at the population level (the distribution of
slopes across experiments is shown in Figure 7F).

Predicting Receptive Fields from Spontaneous
Correlations
To further illustrate the conservation of relationships
between neurons in spontaneous and evoked condi-

tions, we used a prediction method. If linear relationships
provide a good approximation to the restrictions on population
rate vectors, and if these relationships are conserved between
spontaneous and evoked activity, then it should be possible to
predict a neuron’s receptive field based only on its correlations
with the rest of the population during spontaneous activity, and
from the receptive fields of these other cells. We predicted the
firing rate rj of neuron j as a weighted sum of the rates of all other
neurons rj =

P
ri*wi, with weights fit to optimize the prediction on

spontaneous data (Figure 8A; Harris et al., 2003; Itskov et al.,
2008; Luczak et al., 2004). Figures 8B and 8C show the original
and predicted receptive field of a representative neuron.
Repeating this analysis for all cells, we found that the mean
correlation between original and predicted receptive fields was
R = 0.62 ± 0.24 (112 neurons from three experiments in which
tuning curve stimuli were presented). To ensure that this effect
did not simply reflect similarity of receptive fields of neighboring
neurons, we repeated the above analyses excluding neurons
recorded from the same shank as the predicted neuron, again
finding a significant effect (R = 0.56 ± 0.25). This indicated that
receptive field predictability reflects a more complex organiza-
tion of correlations in the population than simple tonotopy (this
is also visible in the correlation matrices of Figure 7B, where

Neuron

Evoked and Spontaneous Neocortical Activity

Neuron 62, 413–425, May 14, 2009 ª2009 Elsevier Inc. 419

Luczak	  et	  al.,	  2007,	  2009,	  2013	  
	  

The analyses presented above were based on PETHs, which
are computed from a neuron’s response averaged over multiple
stimulus presentations. How closely do responses on single
trials match this average picture? To address this, we performed
a direct comparison of spike times on each individual trial to the
mean temporal profile represented in the PETHs. For each trial,
a mean spike time was computed for each neuron firing, and
the sequence in which neurons fired on that trial compared to
the PETH means by rank correlation (see Experimental Proce-
dures and Figure S4A). Figures 2F and 2G show histograms of
rank correlations comparing single-trial sequences evoked by
tones and natural sounds, respectively, to PETHs computed
from all tones, indicating that single-trial spike sequences
showed significant similarity to those predicted from the PETHs
(t test: p < 0.01 for each experiment; see Figure S4C for an alter-
native approach yielding similar results). As with PETHs, the
match of single trials to the average was strongest in the initial
response period (!100 ms), but decayed thereafter (Figure S4B).

Spontaneous Upstates Have a Sequential Structure
Similar to Sensory-Evoked Responses
During sleep, quiet waking, and anesthesia, cortical activity is
characterized by an alternation of ‘‘downstates’’ of network
silence and ‘‘upstates’’ of generalized spiking and neuronal
depolarization, which occur spontaneously in the absence of
sensory stimulation (Figure 3A; Figure S5; DeWeese and Zador,

2006; Luczak et al., 2007; Steriade et al., 1993a; Steriade et al.,
2001). We next asked whether spike patterns accompanying
upstates are also temporally homologous to those evoked by
sensory stimuli. Figures 3B and 3C show upstate-triggered
PETHs of the same neurons as in Figure 2, displayed in the
same vertical order. Again, a similar sequential ordering was
seen. To statistically confirm this similarity, a slightly different
approach was used, as the beginnings of upstates are not exper-
imentally controlled. To measure a cell’s position in the firing
sequence accompanying an upstate, without requiring a precise
trigger event, we defined a measure mcc, the center of mass of its
cross-correlogram with the summed activity of all other neurons
computed in the first 100 ms after the onset of each event type
(see Experimental Procedures). Values of mcc were correlated
between spontaneous events and stimulus classes, demon-
strating that firing order is consistent between sensory stimuli
and spontaneous events (Figures 3D and 3E; Rureth: spont-ton =
0.60 ± 0.14, n = 8 rats; Rureth: spont-nat = 0.57 ± 0.18; Rureth: ton-nat =
0.65 ± 0.07, n = 5 rats; p < 0.001 for each comparison). Consis-
tency of firing order was again confirmed at the single-trial level
by rank correlation (Figure 3F; t test: p < 0.01 for each experiment).

Although single-trial responses showed significant homology
to the mean, spike timing patterns were not identical across
trials, even for repetitions of a single stimulus. Further analyses
(Figures S6 and S7) suggested that spike timing variability in
the initial 100 ms period is close to that predicted from the

Figure 3. Spontaneous Upstates Initiate
Sequential Patterns Homologous to Evoked
Responses
(A) Representative raw data plot showing a tone

response and spontaneous firing event. The green

trace is a synchronization pulse indicating the

duration of a tone stimulus; blue traces show local

field potentials (LFPs) from four separate recording

shanks; underneath is a raster plot showing the

spike trains of simultaneously recorded neurons.

At bottom is the multiunit firing rate (MUA)

computed by averaging all neurons. Neurons are

sorted by average spontaneous MSL to facilitate

visual examination of temporal patterns.

(B) Raster plots showing spike times for the same

neurons as in Figures 2A and 2C, triggered by

upstate onsets. Note the similar temporal pattern

to Figure 2.

(C) Average upstate-triggered activity of all neu-

rons, sorted in the same order as in Figures 2B

and 2D.

(D) Cross-correlograms of one neuron’s spike times

with the summed activity of all other cells, during

different experimental conditions. Vertical arrows

indicate thecenter ofmass (meanspike time)ofcor-

relograms (mcc). Cross-correlograms are normal-

ized between 0 and 1 to facilitate comparison.

(E) Conservation of mcc across different stimuli and

spontaneous events, indicating preservation of

sequential order. Each point represents the values

of mcc for a given cell in the conditions indicated on

the axes.

(F) Histogram of rank correlations between mean

spike times for single-trial tone presentations and

average mean spike times for spontaneous events.
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that temporal profiles are diverse between neurons, and largely
conserved within the responses of each cell to different tones.
The mean latency measure does not fully summarize the shape
of PETHs; for example, a number of PETHs had a bimodal
structure (e.g., Figure 1C). To confirm that PETH shapes were
preserved between stimuli, beyond the conservation of mean
latency, we employed a ‘‘PETH consistency measure’’ (Luczak
et al., 2007), which showed that a neuron’s PETH is more similar
to 83% of its own responses to different tones than to presenta-
tions of the same tone to another neuron (see also Figure S3). In
cortex, spike width can be used to classify cells into putative
fast spiking and pyramidal cells (Bartho et al., 2004; Luczak
et al., 2007); however, we did not observe a significant difference
between MSLs of these cell classes (p > 0.1, Figure 1E). We
conclude that, if a neuron is driven to fire in response to a given
tone, it will do so with a stereotyped cell-specific temporal profile.

Responses to Natural Sounds Show Similar Temporal
Organization to Responses to Tones
The fact that individual neurons have consistent and stereotyped
PETHs, and that these differ between neurons, indicates that at

the population level, responses have a sequential organization.
To visualize this organization, Figure 2B shows in grayscale the
mean PETHs of a simultaneously recorded population to all
tones, sorted by mean response time with MSL indicated by
red dots; raster plots for two of the individual neurons are shown
above in Figure 2A. To determine whether this sequential organi-
zation was preserved in responses to more complex sensory
stimuli, we similarly analyzed the response of the same popula-
tion to a natural sound stimulus (insect vocalization; Figures 2C
and 2D), with neurons sorted in the same order as in Figure 2B.
The sequential structure was largely preserved in response to
this stimulus. To statistically confirm this finding, we again per-
formed a correlation analysis of MSLs (Figure 2E; R = 0.69 ±
0.21; p < 0.001 individually for all five rats to which natural sounds
were presented). As before, no significant difference was found in
MSL between putative pyramidal cells and interneurons (p > 0.1).
In addition to latency analysis, we also quantified PETH consis-
tency across stimuli (79% similarity; Figure S3). We therefore
conclude that presentation of natural sounds initiates—at least
for the first 100 ms—activity patterns whose temporal structure
is homologous to those evoked by tones.

Figure 2. Similar Temporal Activity Patterns
Initiated by Presentation of Tones and
Natural Sounds
(A) Raster plots showing spike times for two repre-

sentative neurons to repeated presentations of

a pure tone stimulus.

(B) Average activity of 90 simultaneously recorded

neurons to tone stimuli. Gray bars show pseudo-

color representations of each neuron’s perievent

time histogram normalized between 0 and 1; red

dots denote each neuron’s MSL in the 100 ms

after tone onset. Neurons are ordered vertically

by the mean latency to all stimuli (see text), to illus-

trate sequential spread of activity.

(C) Response of the same two neurons as in (A) to

a natural sound (insect vocalization; sound spec-

trogram shown below rasters), illustrating temporal

response profiles similar to those of the tone.

(D) Response of the same population as (B),

displayed in the same vertical order, indicating

that the sequential order of firing is preserved.

The dots on the right indicate at which electrode

shank neurons were recorded.

(E) Scatter plot showing each neuron’s MSL for

tones and natural sounds with putative interneu-

rons marked in blue. The distribution of points

along the diagonal indicates preservation of

sequential structure across conditions.

(F) Histogram of rank correlations between mean

spike times for individual tone presentations and

mean response profile across all tones (see

Figure S4A).

(G) Histogram of rank correlations between mean

spike times for single natural sound presentations

and average across all tones. The prevalence of

positive correlations indicates that for the majority

of trials, the sequence of neuronal activation was

preserved.
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Ongoing activity: multistability!

4 different firing rates across states: “multistable”!

Neuron 2!
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Ongoing activity: multistability!

42% of neurons have 3 or 
more firing rates across states!
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1.  State sequences!
!
!
2.  Single neuron multistability!

Ongoing activity: Model!

A model that captures ongoing activity:!
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Ongoing activity: Model!

NE = 4000!
!
NI  = 1000!

30 clusters!



Ongoing activity: Model!

Leaky integrate-and-fire neurons:!

arranged into Q different clusters, with the remaining fraction belonging
to an unstructured (“background”) population (Amit and Brunel, 1997b).
Synaptic weights J!" from neurons in population " ! E, I to neurons in
population ! ! E, I scaled with N as J!" # j!"/!N, with j!" constants
having the following values (units of mV): jEI # 3.18, jIE # 1.06,
jII # 4.24, jEE # 1.77. Within an excitatory cluster, synaptic weights
were potentiated: they took values J!jEE with J! $ 1, whereas synaptic
weights between neurons belonging to different clusters were depressed
to values J"jEE, with J" # 1 % &f# J! % 1$ ' 1, with & # 0.5. The
latter relationship between J! and J" ensures balance between overall
potentiation and depression in the network (Amit and Brunel, 1997b).

Below spike threshold, the membrane potential V of each LIF neuron
evolved according to the following:

(m

dV

dt
# % V ) (m#Irec ) Iext ) Istim$,

with a membrane time constant (m # 20 ms for excitatory and 10 ms for
inhibitory neurons. The input current was the sum of a recurrent input
Irec, an external current Iext representing an ongoing afferent input from
other areas, and an input stimulus Istim representing a delivered taste
during evoked activity only. In our units, a membrane capacitance of
1 nF is set to 1. A spike was said to be emitted when V crossed a
threshold Vthr, after which V was reset to a potential
Vreset # 0 for a refractory period of (ref # 5 ms. Spike thresholds were
chosen so that, in the unstructured network (i.e., with J! # J" # 1),
the E and I populations had average firing rates of 3 and 5 spikes/s,
respectively (Amit and Brunel, 1997b). The recurrent synaptic input
Irec

i
to neuron i evolved according to the dynamical equation as follows:

(s

dIrec
i

dt
# % Irec

i ) "
j%1

N

Jij"
k

*#t % tk
j $,

where tk
j was the arrival time of k-th spike from the j-th presynaptic

neuron, and (s was the synaptic time constant (3 and 2 ms for E and I
neurons, respectively). The postsynaptic current (PSC) elicited by a sin-

gle incoming spike was
Jij

(s
exp# % t/(s$&#t$, where &#t$ # 1 for t + 0,

and &#t$ # 0 otherwise. The ongoing external current to a neuron in
population " was constant and given by the following:

Iext # Nextp"0J"0vext,

where Next # nEN, p"0 # pEE, and J"0 #
j"0

!N
with jE0 # 0.3,

jI0 # 0.1, and vext # 7 spikes/s, respectively. During evoked activity,
stimulus-selective neurons received an additional transient input repre-
senting 1 of the 4 incoming stimuli. The percentage of neurons respon-
sive to 1, 2, 3, or 4 stimuli was modeled after the estimates obtained from
the data, which implied that stimuli targeted overlapping neurons (see
Results). We tested two alternative model stimuli: a biologically realistic
stimulus vstim

th #t$ resembling thalamic stimulation (Liu and Fontanini,
2014), modeled as a double exponential with peak amplitude of 0.3 vext

and rise times of 50 ms and decay times of 500 ms, or a stimulus of
constant amplitude vstim

box ranging from 0 to 0.5vext (“box” stimulus). In
the following, we measure the stimulus amplitude as percentage of vext

(e.g., “30%” corresponds to vstim # 0.3 vext. The onset of each stimulus
was always t % 0, the time of taste delivery. The stimulus current to a
neuron in population " was constant and given by the following:

Istim # Nextp"0J"0vstim.

Mean field analysis of the model. The spiking network model described
in the previous subsection is a complex system capable of many behaviors
depending on the parameter values. One main aim of the model is find-
ing under what conditions it can sustain multiple configurations of ac-
tivity that can be later interpreted as HMM states. Parameter search was
used relying on an analytical procedure for networks of LIF neurons
known as “mean field theory” or “population density approach” (see,
e.g., Amit and Brunel, 1997b; Brunel and Hakim, 1999; Fusi and Mattia,

1999). Under the conditions stated below, this theory provides a global
picture of network behavior together with the associated parameter val-
ues, which can then be tested in model simulations.

Under typical conditions, each neuron of the network receives a large
number of small PSCs per integration time constant. In such a case, the
dynamics of the network can be analyzed under the diffusion approxi-
mation, which is amenable to the population density approach. The
network has " # 1,…,Q ) 2 subpopulations, where the first Q indices
label the Q excitatory clusters, " # Q ) 1 labels the “background”
excitatory population, and " # Q ) 2 labels the homogeneous inhib-
itory population. In the diffusion approximation (Tuckwell, 1988; Lán-
ský and Sato, 1999; Richardson, 2004), the input to each neuron is
completely characterized by the infinitesimal mean ," and variance -"

2 of
the postsynaptic potential. Adding up the contributions from all afferent
inputs, ," and -"

2 for an excitatory neuron belonging to cluster " (Amit
and Brunel, 1997b) are given by the following:

," # (m,E!N#nEf

Q #pEEJ!jEEv" ) "
!%1

Q"1

pEEJ"jEEv!$ ) nE#1 % f $

pEEJ"jEEvE
#bg$ % nIpEIjEIvI ) nEpE0jE0vext$,

-"
2 # (m,E!N#nEf

Q #pEE# J!jEE$2v" ) "
!%1

Q"1

pEE# J"jEE$2v!$ ) nE#1 % f $

pEE# J"jEE$2vE
#bg$ ) nIpEIjEI

2 vI$,

where vE
#bg$ is the firing rate of the unstructured (“background”) E pop-

ulation. Afferent current and variance to a neuron belonging to the back-
ground E population and to the homogeneous inhibitory population are
as follows:

,E
#bg$ # (m,E!N#nEf

Q "
!%1

Q

pEEJ"jEEv! ) nE#1 % f $pEEjEEvE
#bg$ % nIpEIjEIvI

) nEpE0jE0vext$,

#-E
#bg$$2 # (m,E!N#nEf

Q "
!%1

Q

pEE# J"jEE$2v! ) nE#1 % f $pEEjEE
2 vE

#bg$

) nIpEIjEI
2 vI$,

,I # (m,I!N#nEf

Q "
!%1

Q

pIEjIEv! ) nE#1 % f $pIEjIEvE
#bg$ % nIpIIjIIvI

) nEpI0jI0vext$,

-I
2 # (m,I!N#nEf

Q "
!%1

Q

pIEjIE
2 v! ) nE#1 % f $pIEjIE

2 vE
#bg$ ) nIpIIjII

2 vI$.

Parameters were chosen so as to have a balanced unstructured network.
In other words, our network with J! # J" # 1 (where all E¡ E
synaptic weights are equal) would operate in the balanced asynchronous

Mazzucato et al. • Multistable Ongoing and Evoked Activity J. Neurosci., May 27, 2015 • 35(21):8214 – 8231 • 8217

Figure 4. Dynamics of the spiking network model during ongoing activity. Simulation of the network in Figure 3 with 4000 excitatory and 1000 inhibitory LIF neurons, Q ! 30 clusters at
intracluster synaptic potentiation J" ! 5.2. A, Incoming PSC to an excitatory (PSCE, top plot) and an inhibitory (PSCI, bottom plot) neuron: EPSC (blue trace), IPSC (red trace), external current
(green line), and total current (black trace) are in a balanced regimen. x-axis, time (seconds); y-axis, PSC (nA). B, Membrane potential from representative excitatory (VE, top plot) and inhibitory (VI,
bottom plot) neurons. Vertical bars represent spikes. Horizontal dashed lines indicate threshold for spike emission. x-axis, time (seconds); y-axis, membrane potential V (mV). For illustration
purposes, V was linearly transformed to obtain the threshold for spike emission at #45 mV and the reset potential after a spike at #60 mV. C, Representative rasterplot from excitatory clustered
neurons. Each dot represents a spike (background population not shown). Clusters of neurons that are currently active appear as darker regions of the raster. x-axis, time (seconds); y-axis, neuron
index. D, Time course of the number of active clusters from the representative trial in C. x-axis, time (seconds); y-axis, number of active clusters. E, Average firing rates in the active clusters as a
function of the number of active clusters across all simulated sessions. Error bars indicate SD. x-axis, number of active clusters; y-axis, average cluster firing rate (spikes/s). Inset, Occurrence of states
with different counts of active clusters for 5% stimulus amplitude. x-axis, number of active clusters; y-axis, frequency of occurrence (% of total time). F, Instantaneous cluster firing rate in three
representative clusters (red, blue, and green lines) from trial in C. x-axis, time (seconds); y-axis, firing rate (spikes/s).
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Ongoing activity: Model!
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Figure 4. Dynamics of the spiking network model during ongoing activity. Simulation of the network in Figure 3 with 4000 excitatory and 1000 inhibitory LIF neurons, Q ! 30 clusters at
intracluster synaptic potentiation J" ! 5.2. A, Incoming PSC to an excitatory (PSCE, top plot) and an inhibitory (PSCI, bottom plot) neuron: EPSC (blue trace), IPSC (red trace), external current
(green line), and total current (black trace) are in a balanced regimen. x-axis, time (seconds); y-axis, PSC (nA). B, Membrane potential from representative excitatory (VE, top plot) and inhibitory (VI,
bottom plot) neurons. Vertical bars represent spikes. Horizontal dashed lines indicate threshold for spike emission. x-axis, time (seconds); y-axis, membrane potential V (mV). For illustration
purposes, V was linearly transformed to obtain the threshold for spike emission at #45 mV and the reset potential after a spike at #60 mV. C, Representative rasterplot from excitatory clustered
neurons. Each dot represents a spike (background population not shown). Clusters of neurons that are currently active appear as darker regions of the raster. x-axis, time (seconds); y-axis, neuron
index. D, Time course of the number of active clusters from the representative trial in C. x-axis, time (seconds); y-axis, number of active clusters. E, Average firing rates in the active clusters as a
function of the number of active clusters across all simulated sessions. Error bars indicate SD. x-axis, number of active clusters; y-axis, average cluster firing rate (spikes/s). Inset, Occurrence of states
with different counts of active clusters for 5% stimulus amplitude. x-axis, number of active clusters; y-axis, frequency of occurrence (% of total time). F, Instantaneous cluster firing rate in three
representative clusters (red, blue, and green lines) from trial in C. x-axis, time (seconds); y-axis, firing rate (spikes/s).
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Figure 4. Dynamics of the spiking network model during ongoing activity. Simulation of the network in Figure 3 with 4000 excitatory and 1000 inhibitory LIF neurons, Q ! 30 clusters at
intracluster synaptic potentiation J" ! 5.2. A, Incoming PSC to an excitatory (PSCE, top plot) and an inhibitory (PSCI, bottom plot) neuron: EPSC (blue trace), IPSC (red trace), external current
(green line), and total current (black trace) are in a balanced regimen. x-axis, time (seconds); y-axis, PSC (nA). B, Membrane potential from representative excitatory (VE, top plot) and inhibitory (VI,
bottom plot) neurons. Vertical bars represent spikes. Horizontal dashed lines indicate threshold for spike emission. x-axis, time (seconds); y-axis, membrane potential V (mV). For illustration
purposes, V was linearly transformed to obtain the threshold for spike emission at #45 mV and the reset potential after a spike at #60 mV. C, Representative rasterplot from excitatory clustered
neurons. Each dot represents a spike (background population not shown). Clusters of neurons that are currently active appear as darker regions of the raster. x-axis, time (seconds); y-axis, neuron
index. D, Time course of the number of active clusters from the representative trial in C. x-axis, time (seconds); y-axis, number of active clusters. E, Average firing rates in the active clusters as a
function of the number of active clusters across all simulated sessions. Error bars indicate SD. x-axis, number of active clusters; y-axis, average cluster firing rate (spikes/s). Inset, Occurrence of states
with different counts of active clusters for 5% stimulus amplitude. x-axis, number of active clusters; y-axis, frequency of occurrence (% of total time). F, Instantaneous cluster firing rate in three
representative clusters (red, blue, and green lines) from trial in C. x-axis, time (seconds); y-axis, firing rate (spikes/s).
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Ongoing activity: Model!
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Ongoing activity: Model!
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NE!
NI !
clusters!

1 active cluster!

Synap3c	  strength	  (within-‐cluster)	  



Ongoing activity: Model!
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Ongoing activity: Model!

Simulation!
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Ongoing activity: Model!
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Evoked activity: Model!
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Evoked activity: Model!
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Stimuli reduce multistability!
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Taste-evoked activity!
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Stimuli reduce multistability!
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Neural dimensionality!
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Model predictions!
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Taste-evoked activity!
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•  Ongoing activity in taste cortex - we discovered:!
•  State sequences!
•  Multistability (42% neurons have ≥ 3 firing rates)!

•  Mechanistic model predicts response to stimuli.!
•  Stimuli reduce multistability & dimensionality.!

A bottom-up approach to sensory processing	  
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Expectations bias sensory processing!



Conditioned 
stimulus!

Unconditioned 
stimulus!

Hypothesis: Expectation is a top-down signal !
! !        priming sensory cortex!

Samuelsen	  et	  al.,	  2012	  

Classical conditioning: Expectation of a stimulus 
! ! ! ! ! ! ! speeds up sensory processing!

Expectations bias sensory processing!
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